Treatment Outcome of Graves’ Disease in Thai Children

Pavintara Harinsoot Somnuke MD*, Pawana Pusuwan MD**, Supawadee Likitmaskul MD*, Jeerunda Santiprabhob MD*, Pairunyar Sawathiparnich MD*

* Division of Pediatric Endocrinology, Department of Pediatrics, **Department of Nuclear Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Background: Graves’ disease is the most common cause of thyrotoxicosis in children. Treatment of Graves’ disease consists of anti-thyroid drugs, radioactive iodide and thyroidectomy but the optimal treatment of GD in children is still controversial.

Objective: To review treatment outcome of Graves’ disease in Thai children.

Material and Method: Retrospective review of 32 children with Graves’ disease, diagnosed between Jan.1994 and Dec. 2004, at the Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand was performed.

Results: All patients (median age 10.5 yrs, range 2.85-15 yrs) presented with goiter and increased serum T4 (median 18.4 mcg/dL, range 8.8-30 mcg/dL), serum T3 (median 443 ng/dL, range 206-800 ng/dL) and suppressed TSH levels (median 0.009 mU/L, range 0-0.18 mU/L). Anti-thyroglobulin and Anti-microsomal antibodies were positive in 70% and 82% respectively. All patients except two were initially treated with propylthiouracil (PTU). Two patients were initially treated with methimazole. Adverse reaction of PTU occurred in two patients (One girl had arthritis, positive pANCA, nephritis and another girl had skin rash and arthritis).Clinical course of 32 patients after treatment with anti-thyroid drugs mainly PTU for 3.4 (range 0.3-11.2) years is as follows: six (18.8%) underwent remission (cessation of PTU > 2 yrs), three (9.4%) relapsed, one (3.1%) underwent subtotal thyroidectomy, and seven (21.9%) had I131 treatment. All patients (6 of 7) who received I131 dose of 100 µCi/g of thyroid tissue required more than a single dose of I131 treatment. Further outcome in fifteen patients (46.9%) is yet to be followed. Among these patients PTU was just discontinued in four and eleven had never been off anti-thyroid drugs (four still had biochemical hyperthyroidism and seven were biochemically euthyroid).

Conclusion: PTU was the most common first line therapy in the presented patients with Graves’ disease. Remission rate was only 18.8% after an average 3.5 years of treatment with anti-thyroid drugs. I131 or thyroidectomy was used as second line therapy in the present study. They were offered to those who developed side effects, had poor compliance or failed medication. For those who received I131, higher dose (200 µCi/g of thyroid tissue) seemed to be more effective than the lower dose (100 µCi/g).

Keywords: Graves’ disease, Children, Antithyroid drugs, Radioactive iodide, Thyroidectomy

J Med Assoc Thai 2007; 90 (9): 1815-20
Full text. e-Journal: http://www.medassocthai.org/journal

Graves’ disease is the most common cause of thyrotoxicosis in children. The incidence progressively increases throughout childhood. Graves’ disease is more common in girls than in boys. Most children with Graves’ disease present with classic symptoms and signs such as goiter, tachycardia, nervousness, exophthalmos, tremor, increase appetite, and hyperactivity. Important initial laboratory tests include elevated serum T4 and T3 with suppressed TSH.

Therapeutic options of Graves’ disease are anti-thyroid drugs (ATD), radioactive iodide (RAI) treatment with I131 and thyroidectomy. To date, the best treatment is still controversial. Treatment with ATD is well known to be associated with low remission rates and
high adverse side effects. Serious side effects including agranulocytosis and hepatitis occur rarely but can be fatal. However, anti-thyroid drugs are frequently used as a first-line therapy in children in many institutions.

RAI is a highly effective treatment of Graves’ disease. Many physicians avoid RAI as a first-line treatment in pediatric Grave’ disease because of the concerns of potential long-term consequences, especially thyroid neoplasm.

Meanwhile, thyroidectomy yields high remission rates but requires highly-experienced thyroid surgeons.

The purpose of the present descriptive study was to evaluate the long-term treatment outcome of Graves’ disease in 32 Thai children.

Material and Method

The authors retrospectively reviewed the charts of 32 children treated for Graves’ disease from 1994 to 2004, at the Division of Pediatric Endocrinology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand. The diagnosis was confirmed with classic symptoms and signs, biochemical evidence of hyperthyroidism at diagnosis. Thyroid stimulating immunoglobulin was not routinely performed at the institution. All patients were initially given anti-thyroid drugs (either propylthiouracil (PTU) or methimazole). Propranolol was used in some patients to reduce adrenergic symptoms. If hypothyroidism occurred during treatment of Graves’ disease, the doses of anti-thyroid drugs were kept the same and thyroxine was added or the doses of anti-thyroid drugs were decreased at each physician’s preference. Radioactive iodide (RAI) and thyroidectomy were the second line therapy in some patients. The age of the patients, duration of treatment and therapeutic outcome in each individual were recorded. Since the presented data are not normally distributed, they are presented as median (range).

Remission means successful cessation of anti-thyroid medication ≥2 years. Relapse means reappearances of clinical or biochemical hyperthyroidism after discontinuation of anti-thyroid drugs.

Results

Patient characteristics

There were 24 girls and 8 boys (girls:boys = 3:1, median age 10.5 years, range 2.85-15 years). The age at diagnosis in girls and boys were 10.1 (2.9-13.7) years and 11.1 (7.7-15) years respectively. Most children (71.9%) were pre-pubertal. Median body mass index (BMI) was 15 (12.3-21.6) kg/m².

Family history of thyroid disease was present in 43.8% of the patients. All patients had increased serum T4 (median 18.4 mcg/dL, range 8.8-30 mcg/dL), T3 (443.4 ng/dL, range 206-800 ng/dL) and suppressed TSH levels (0.009 mU/L, range 0-0.18 mU/L) at initial diagnosis. Anti-thyroglobulin and Anti-microsomal antibodies were positive in 70% and 82% of patients respectively.

Clinical presentation

All patients presented with goiter while exophthalmos was present in 58% of patients. Other signs and symptoms are shown in Table 1.

Treatment outcome

All patients received anti-thyroid drugs as first line therapy. All patients except two were initially treated with PTU (median dose 6 mg/kg/day, range 2.3-10 mg/kg/day). Two were initially treated with methimazole (median dose 0.6 mg/kg/day, range 0.64-0.65 mg/kg/day). Five patients who were treated with PTU (median duration 2.2 years, range 1.2-3.2 years) were subsequently switched to methimazole due to poor compliance. Propranolol was administered in 27 patients (84.4%) to reduce adrenergic symptoms in the first few months. Thyroxine replacement was added in 13 patients (40.6%) to maintain euthyroidism.

Clinical course after initiation of anti-thyroid drugs

All patients (n = 32) received anti-thyroid drugs for 3.4 (0.3-11.2) years.

Six patients (18.8%) underwent remission (median remission period 3.8 years, range 2.1-5.3 years) after 4.2 (2.4-11.2) years of PTU.
Three patients (9.4%) relapsed at 2.2 (1.9-5.5) years after discontinuation of anti-thyroid drugs (one received PTU, two received methimazole). They received anti-thyroid drugs for 3.7 (2.2-5.7) years before treatment discontinuation.

PTU was discontinued for less than 2 years (median 0.9 years, range 0.2-1.8 years) in four patients (12.5%). They had received PTU for 2.5 (2-3.7) years. One girl was diagnosed with systemic lupus erythematosus and subsequently died from mitral valve prolapse and congestive heart failure.

Eleven patients (34.4%) had never been off PTU. Among these, five still had biochemical hyperthyroidism after treatment with PTU for 2.6 (0.3-5.8) years. Six patients were euthyroid after 1.95 (0.3-5.4) years of PTU. However, all eleven patients were clinically euthyroid.

One 9 yr-old girl developed myasthenia gravis after 10 months duration of Graves’ disease. Adverse reactions of PTU occurred in two patients (6.3%). One girl had arthralgia, positive perinuclear anti-neutrophil cytoplasmic antibodies (pANCA) and nephritis. This girl also developed chronic dacryoadenitis, an inflammatory disorder associated with autoimmune thyroiditis. The other girl had skin rash and arthralgia. Adverse reaction subsided after PTU was discontinued in both patients.

Thyroidectomy

One boy (3.1%) underwent subtotal thyroidec-
tomy at the age of 18.6 years after 6.8 years of treatment with PTU. The indications of thyroidectomy were large goiter and his poor compliance with PTU. He still had biochemical hyperthyroidism 3 months after thyroidecotomy and later was treated with PTU.

Radioactive iodide treatment with I131 (Table 2)

Seven patients (21.9%) underwent I131 treatment due to persistent hyperthyroidism while being on anti-thyroid drugs (median duration of anti-thyroid drugs 3.8 years, range 0.3-8.3 years). Initial doses of I131 were 100 µCi/gram of thyroid tissue in six patients (patients no.1-6) and 200 µCi/gram of thyroid tissue in one patient (patient no. 7). After first I131 treatment, patients no. 1-6 required more than one dose but patient no. 7 required only single dose of I131. Median age of patients when treated with I131 was 15.2 years (range 11.0-18.9 years). Four patients developed hypothyroidism within 1.5-2 months after the last doses of I131. Three patients maintained euthyroidism after the follow up period of 0.8-1.7 years.

Table 2. Clinical characteristics and treatment outcome of 7 children with Graves’ disease who received I131 treatment

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Sex</th>
<th>Age at Dx (years)</th>
<th>Age of 1st I131 treatment (years)</th>
<th>Calculated 1st dose (µCi/g of thyroid tissue)</th>
<th>Times of 1st and 2nd dose, 2nd and 3rd dose</th>
<th>Duration after 1st I131 treatment before developing hypothyroid</th>
<th>Follow up periods</th>
<th>Outcome after last I131 treatment</th>
<th>Duration between 1st and 2nd dose, 2nd and 3rd dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female</td>
<td>9.9</td>
<td>10.3</td>
<td>100</td>
<td>2</td>
<td>2 months</td>
<td>1.5 months</td>
<td>Hypothyroid</td>
<td>2 years</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>10.3</td>
<td>15.4</td>
<td>100</td>
<td>2</td>
<td>10 months</td>
<td>2 months</td>
<td>Hypothyroid</td>
<td>1.75 years</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>11</td>
<td>12</td>
<td>100</td>
<td>2</td>
<td>10 months</td>
<td>10 months</td>
<td>Hypothyroid</td>
<td>0.7 years</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>11.3</td>
<td>15.7</td>
<td>100</td>
<td>2</td>
<td>10 months</td>
<td>8 months</td>
<td>Hypothyroid</td>
<td>1.6 years</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>13</td>
<td>15.3</td>
<td>100</td>
<td>2</td>
<td>10 months</td>
<td>10 months</td>
<td>Hypothyroid</td>
<td>0.8 years</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>15</td>
<td>18.9</td>
<td>100</td>
<td>3</td>
<td>3 months</td>
<td>13 and 10 months</td>
<td>Hypothyroid</td>
<td>1.7 years</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>13.7</td>
<td>13.8</td>
<td>200</td>
<td>1</td>
<td>-</td>
<td>1.3 years</td>
<td>Hypothyroid</td>
<td>1.5 months</td>
</tr>
</tbody>
</table>
Discussion

In this 10-year retrospective study of the treatment outcome of Graves’ disease in 32 Thai children, the authors demonstrated that remission rate following anti-thyroid medication mainly PTU was only 18.8% after average 3.5 years of treatment.

Graves’ disease is the most common cause of thyrotoxicosis in children. It is a significant medical problem that can be life-threatening and can adversely alter physical growth and development, including a child’s ability to learn. In the present study, Graves’ disease was more common in girls than in boys as previously reported.

Mean age of diagnosis in the present study was 10.3 years, which was comparable to other studies.

Goiter was present in all patients in the present study. Goiter is the most common presenting symptoms and sign in pediatric Graves’ disease. It has been reported to be present approximately in 90-100% of cases. Exophthalmos was present in only 58% in the present study. In previous studies, eye signs were present up to 70% of children with Graves’ disease. Other symptoms and signs of excessive thyroid hormone activity including tachycardia, irritability, and palpitation were present in > 50% of the presented patients. Weight loss, diarrhea, fine tremor, and sleep disturbance were less common. Since history of symptoms was obtained by recall, the prevalence of such symptoms might not be accurate. The diagnosis of Graves’ disease was straightforward in the presented patients. All patients had increased serum T4, T3 and suppressed TSH levels.

The three therapeutic options used to treat pediatric Graves’ disease include anti-thyroid drugs, radioactive iodide, and thyroidectomy. PTU and methimazole are the available anti-thyroid drugs in Thailand. PTU was the most common first-line therapy for pediatric Graves’ disease in the present study. When patients failed medication, then radioactive iodide or thyroidectomy became second-line therapy.

Sustained remission after treatment with anti-thyroid drugs alone was achieved in only 18.8% of the presented patients following mean duration of treatment of 3.5 years. Remission rate after medical treatment has been previously reported to be widely varied between 11-77%, but is usually less than 30-40%. Duration of medical therapy before successful remission has been reported to be ranging from 2 to 6 years.

In the present study, the authors found minor side effects in only 6% of PTU-treated patients. The side effects associated with PTU in the present study was less than previously reported. This could be due to small numbers of presented subjects. In other studies, side effects occurred in 20-30% of children during therapy with anti-thyroid drugs. Major reactions including hepatitis and vasculitis were reportedly more common in PTU-treated patients than methimazole. Despite less chance of developing major side effects, better compliance and possible better therapeutic outcome with methimazole, PTU was more commonly used in children with Graves’ disease in the present study.

Regarding the association between Myasthenia gravis and autoimmune thyroid disease, myasthenia gravis has been reported in 0.2% of patients with autoimmune thyroid diseases.

In the present study, there were patients who still had biochemical hyperthyroidism while being on PTU. To date, there is no consensus regarding the optimal length of anti-thyroid medication before considering cessation of medication in these children. I131 or thyroidectomy should be offered to patients who still had biochemical hyperthyroidism while on anti-thyroid drugs for an extended period of time.

Only one patient underwent subtotal thyroidectomy due to a large goiter, persistent hyperthyroidism after almost 7 years of PTU, and poor compliance with PTU. Nevertheless, his hyperthyroidism relapsed. In the past, when thyroidectomy was indicated in children with Graves’ disease, subtotal thyroidectomy was commonly performed in order to maintain euthyroid state. However, subtotal thyroidectomy resulted in a high recurrent rate (10-15%) of hyperthyroidism. Currently, total thyroidectomy is recommended. Hypothyroidism post thyroidectomy has become more acceptable and not been considered as a complication of thyroidectomy.

Radioactive iodide (RAI) treatment for children with Grave’s disease has become more popular in many countries. The goal of RAI therapy is to destroy sufficient thyroid tissue to cure hyperthyroidism. Remission rate in pediatric Graves’ disease has been reported up to 95%.

In the present study, patients who underwent I131 treatment received anti-thyroid drugs previously. The reasons of switching to I131 were persistent hyperthyroidism, poor adherence with medication and side effects of anti-thyroid drugs.

Most of the presented patients required repeated RAI treatment. Calculated I131 dose in all patients who needed 2nd and 3rd RAI therapy was approximately 100 µCi/g of thyroid tissue. Only one
patient received only single dose of I131 200 \(\mu\)Ci/g of thyroid tissue and became hypothyroid within 1.5 months. Although the number of patients who received I131 in the present study was small, higher dose of I131 seemed to be more effective than the lower dose. Accumulating data have shown that an I131 dose of at least 150 \(\mu\)Ci/g of thyroid tissue in pediatric Graves’ disease is safer and effective than a lower dose(13). Moreover, low doses of I131 (< 75 \(\mu\)Ci/g of thyroid tissue) was associated with an increased risk of benign thyroid neoplasm in children(14).

Many physicians are reluctant to use RAI treatment in children with Graves’ disease due to concern that these patients might later develop thyroid carcinoma. Previous data have shown that RAI treatment is not associated with moderate or high risks of future thyroid carcinoma in children older than 5 years of age(14). In the present study, the authors treated their patients with RAI only in children who were > 10 years old since safety data are limited for very young children.

In the present study, 57% of patients who received of I131 became hypothyroid within 2 months after last doses of I131. High percentage of hypothyroidism within 6 months after I131 in the present study could be due to cumulative effect of repeated doses of I131. In general, 60-90% of children treated with a single dose of 150-200 \(\mu\)Ci/g thyroid will become hypothyroid(13). The presented patients who had biochemical euthyroidism after I131 treatment were followed for less than 2 years. Long-term follow-up of thyroid function is needed in these patients.

Conclusion

PTU was the most common first-line therapy in the presented patients with Graves’ disease. The remission rate was only 18.8% after an average 3.5 years of treatment with antithyroid drugs. I131 or thyroidectomy was used as second line therapy in the present study. They were offered to those who developed side effects, had poor compliance or failed medication. For those who received I131, higher dose (200 \(\mu\)Ci/g of thyroid tissue) seemed to be more effective than the lower doses (100 \(\mu\)Ci/g).

References

ผลการรักษา Graves’ disease ในเด็กไทย

ปวินทรา หะริณสุต, สมนึก, ภาวนา ภู่สุวรรณ, สุภาวดี ลิขิตมาศกุล, จีรันดา สันติประภพ, ไพรัลยา สวัสดิ์พานิช

ภูมิหลัง: Graves’ disease เป็นสาเหตุที่พบบ่อยที่สุดของการไทรอยด์เป็นพิษในเด็ก การรักษาประกอบด้วยยาต้านไทรอยด์, I131 และการผ่าตัดต่อมไทรอยด์ แต่ยังไม่มีสรุปวิวัฒน์เป็นการรักษาที่ดีที่สุด

วัตถุประสงค์: เพื่อศึกษาผลการรักษา Graves’ disease ในเด็กไทย

วัสดุและวิธีการ: เป็นการศึกษาการทำงานในผู้ป่วย 32รายที่ได้รับการวินิจฉัยเป็น Graves’ disease ในช่วงมกราคม พ.ศ. 2537 – ธันวาคม พ.ศ. 2547 ที่หน่วยต่อมไร้ท่อ ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล

ผลการศึกษา: ผู้ป่วยทุกราย (ค่ามัธยฐานของอายุ 10.5 ปี, พิสัย 2.85-15 ปี) มีคอพอกและมีการเพิ่มขึ้นของซีรัม T4 (ค่ามัธยฐาน 18.4 ไมโครกรัม, พิสัย 8.8-30 ไมโครกรัม), ซีรัม T3 (ค่ามัธยฐาน 443 นาโนกรัม/ดล., พิสัย 206-800 นาโนกรัม/ดล.). และมีการลดลงของซีรัม TSH (ค่ามัธยฐาน 0.009 ไมโครยูนิต/ลิตร, พิสัย 0-0.18 ไมโครยูนิต/ลิตร 70% และ 82% ของผู้ป่วยมี antithyroglobulin และ antimicrosomal แอนติบอดีสูงในซีรัม ผู้ป่วยทุกราย ยกเว้น 2ราย ได้รับการรักษาด้วย methimazole) โดยรับการรักษาเริ่มต้นด้วย PTU ผู้ป่วย 2รายมีผลข้างเคียงจาก PTU (เด็กหญิง 1 รายมีปวดข้อ, pANCA ⊕ และไตอักเสบ, เด็กหญิงอีก 1 รายมีผื่นและปวดข้อ) ผู้ป่วยทุกรายที่ได้รับยาต้านไทรอยด์เป็นเวลาเฉลี่ย 3.4 ปี (พิสัย 0.3-11.2 ปี) 6ราย (18.8%) หายจาก Graves’ disease (สามารถหยุดยาได้ ≥ 2 ปี), 3ราย (9.4%) ลดมีอาการไม่เลวร้าย, 1ราย (3.5%) ได้รับการผ่าตัดต่อมไทรอยด์แบบ subtotal และ 7ราย (21.9%) ต้องได้รับการรักษาด้วย I131 ผู้ป่วยทุกรายที่ได้รับ I131 ขนาดเพียง 100 μCi/กรัมของต่อมไทรอยด์ (6รายจาก 7ราย ที่ได้รับการรักษาด้วย I131) ต้องได้รับ I131 มากกว่า 1ครั้ง ขณะนี้ยังไม่สามารถสรุปผลการรักษาได้ 15ราย (46.9%) จาก 32ราย เนื่องจากยังมีการติดตามยาเพียงภาพ 4ราย พบหยุดยาอย่างกว่า 2ปีและ 11ราย ยังคงใช้ยาต้านไทรอยด์ไม่เคยหยุดยา

สรุป: PTU เป็นการรักษาที่ใช้มากที่สุดเป็นอันดับแรกในผู้ป่วยเด็กที่เป็น Graves’ disease ที่คลินิกต่อมไทรอยด์ ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล เมื่อเทียบเวลาสะสมอยู่ในภาวะไทรอยด์เป็นพิษ 18.8% หลังจากได้รับยาต้านไทรอยด์เป็นเวลาเฉลี่ย 3.5 ปี การรักษาด้วยยาต้านไทรอยด์หรือการให้ I131 ได้ปล่อยในการรักษาต่อมไทรอยด์ที่ 2ในกรณีศึกษาที่นี้จะใช้ในการวิเคราะห์ผู้ป่วยที่มีเลือดบนของซีรัม ไม่ได้ใช้การรักษาด้วยยา ไม่ได้ผล การรักษาด้วย I131 ขนาดต่ำ (≥ 200 μCi/กรัมของต่อมไทรอยด์) ต่อมไทรอยด์ (100 μCi/กรัมของต่อมไทรอยด์) ในการศึกษานี้