Hepatolithiasis

Pramote Kotepankun
Chutwichai Tovikkai
Narasara Vittayapipat
Somchai Limtsrichamreon, Advisor
21 Nov 2007

Definition
Calculi or concretions located proximal to the confluence of the Left and Right hepatic ducts

Epidemiology
Most common in East Asia:
Taiwan: 50%
Hong Kong: 3.1%
Japan: 2.2%
Singapore: 1.7%
Western countries less than 1%

Incidence
Equal gender distribution
Type I present in 5th to 6th decades of life
Type IE present in 7th to 8th decades of life

Classification
Most recent system: Nakayama in 1982
- intra-hepatic bile ducts: I
- extra-hepatic bile ducts: E
- intra&extra hepatic bile duct: IE

By locations in liver:
- Right side: type R
- Left side: type L
- Both side: type LR
- Caudate lobe: type C

Most stones appear as brown pigment stones (calcium bilirurate)
Left duct involvement > Right ducts
Left duct courses horizontally in relation to the CHD as compared to the right duct forming an acute angle

Pathology
Bile stasis & mucin producing activity
Bacterial infection
- *Escherichia coli*
- *Clostridium*
- *Bacteroides*
Helmintic infestation
- *Ascaris lumbricoides*
- *Clonorchis sinensis*
Natural history

122 patients with CT & CT-Cholangiography 14/122 became symptomatic at
mean 3.4 yrs
Symptoms: Recurrent abdominal pain, hepatic abscesses, lobar atrophy, cholangitis & cholangiocarcinoma
Lobar atrophy: Major role in development symptoms
- 13/14 (93%) of symptomatic group
- 14/108 (13%) of asymptomatic group
Liver atrophy:
- Hepatolithiasis that associated with CHCA found liver atrophy 90.4%
- Destruction of hepatocyte → chronic inflammation
- CHCA found at atrophic and irregular duct about 22.7%
- Found in developing symptom group = 92.9%
Recurrence of HL in the atrophic liver causes persistent chronic inflammation which leads to formation of strictures and more HL and possibly cholangiocarcinoma
Lobar atrophy is a risk factor for cholangiocarcinoma & hepatectomy is indicated
If left untreated Hepatolithiasis leads to
- Recurrent pyogenic cholangitis
- Progressive biliary strictures
- Formation of liver abscesses
- Atrophy of the affected liver
- Secondary biliary cirrhosis
- Portal Hypertension
- Cholangiocarcinoma
12% develop symptoms in 9 months – 7 years
CCA develops in 10% of IHD stones in Japan
Hepatolithiasis is a risk factor for cholangiocarcinoma from 2.3-10%
Proposed mechanism of CCA:
- Prolonged irritation of biliary epithelium by calculi
- Long term exposure to bile & its products
- Repeated infections
- Metabolic byproducts of bacteria in the biliary tree
- Dynamic irritation by unstable bile flow
- Bile Stasis, reflux & turbulence
Conclusion:
“Closed observation is an alternative management in asymptomatic group except liver atrophy and migrate to extrahepatic part”
Clinical Manifestation & Investigation

Signs & Symptoms
- Abdominal Pain: RUQ or upper abdomen, most common, 70%
- Jaundice & Fever (Cholangitis): 10-30%, Tend to recur, chronic
- Resulting sepsis
- Liver abscess
- Cholangiocarcinoma
 - 25% cause of death in IHD stone patients
 - 5.2% associated with biliary tract carcinoma
 - Intrahepatic cholangiocarcinoma most common
 - In cholangiocarcinoma, associated with IHD 5.7-17.5%
- Abdominal discomfort
- Vomiting
- Asymptomatic: Increased to 16.1%, because of advanced in diagnostic imaging & check-up
 - Hx of previous biliary surgery = 42.1%
 - 22.2% had 2 or more operation = Intractable course of disease

Investigation
- Aim:
 - Diagnosis of IHD stone
 - Evaluate precise location of stones
 - Stricture of bile ducts
 - Concurrent cholangiocarcinoma

Ultrasonography
- Noninvasive, reliable, inexpensive
- First study when suspected hepatolithiasis, Screening tools
- Biliary obstruction: ductal dilatation
- Stone in biliary system: Hyperechoic lesions with acoustic shadows
- Liver abscess
- Ca bilirurate stone: Marked biliary dilatation peripheral to stone
- Cholesterol stone: Limited dilatation at stone location
- Pneumobilia: No shadow, Postural migration, supine & knee-elbow position

Equipment- & operator-dependent

CT scan
- Provide location, type of stone, lobe atrophy, liver parenchyma, anatomic details for deciding treatment
- Single most cost-effective study
- Ca bilirurate stone: round, oval high density in dilated ducts
- Cholesterol or pigmented stone: hard to detect, false negative rate
- Look in noncontrast film first
- Dilated bile ducts: Low-density, tubular, tortuous, branching structures on contrast-enhanced film
- Liver lobar atrophy
- Liver abscess
Cholangiocarcinoma
Portal hypertension
Biliary cirrhosis

CT cholangiography
Slow IV infusion of meglumine iotroxate, Excrete in bile, fill in biliary system
Higher sensitivity than plain CT (92%)
Impaired hepatic function → contrast not excrete in bile duct
Liver atrophy → defect of biliary tree

MRI & MRCP
Non-invasive, no nephrotoxic, no ionizing radiation
Not suitable when therapeutic intervention is planned
Stone location
Obstructed intrahepatic segmental ducts
Bile duct diameter calculation
Abscess: cystic mass variable intensity in T2
Stones: defective low-intensity areas

MRI & MRCP
Evaluation of bile duct stricture or dilatation
96-100% accuracy for level of obstruction
90% accuracy for cause of obstruction

<table>
<thead>
<tr>
<th>Detecting</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHD stones</td>
<td>97%</td>
<td>99%</td>
<td>98%</td>
</tr>
<tr>
<td>strictures</td>
<td>93%</td>
<td>97%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Limitation:
- Concurrent intraductal cholangiocarcinoma
- Difficult in certain patients: claustrophobia, pacemakers, implants

Percutaneous transhepatic imaging
Especially if stones in Rt lobe or both lobes
More precise information about segmental & subsegmental anatomy of IHD & strictures
Percutaneous transhepatic biliary drainage (PTBD), tube cholangiography
Percutaneous transhepatic cholangiography (PTC)
Percutaneous transhepatic cholangioscopy (PTCS), Selective cholangiography

PTC vs PTBD, PTCS
- Not always adequate visualized
- Impacted stones, mud or mucin in IHD
- Tube cholangiography via PTBD or selective cholangiography by PTCS better
 Image obtained after decompression
 Before & after remove impacted stone
Various projection : RAO, LAO, Rt lat, Lt lat
Biliary stricture with proximal duct dilatation
 - Ca bilirubinate stone more frequently than others
 - False positive: narrow space between stones and bile duct wall, disappear after PTCS lithotomy
 - Localized unchange diminution of bile duct caliber
 - Cause stone formation or result from stones & repeated infection?
Cholangiocarcinoma
 - Difficult by cholangiography
 - Stones & stricture obscure visualization of entire IHD
 - Diagnostic clues
 Persistent filling defects & obliteration of involved IHD
 Mucobilia & mucosal change in PTCS

ERCP
Operator-dependent
Morbidty 1-7%, Unsuccessful cannulation 3-10%
Sensitivity 90-96% & Specificity 98% in CBD stone
Frequently misdiagnosis in IHD stone
IHD peripheral to stones or strictures poorly visualized
Risk of cholangitis: Esp. multiple intrahepatic stones
MRCP better than ERCP
Therapeutic role: extract stone, biopsy, stenting

Planning definitive treatment
Aim:
 - To eliminate source of recurrent sepsis by removal ductal stone
 - Bypass or resect stricture part
 - Resection of chronic infective useless hepatic segment
 - Preserving functioning liver parenchyma
Detection and localization of ductal stone
 - Combination of cholangiography, ultrasonography, CT
Imaging of liver volume and parenchymal involvement
 - Ultrasonography, CT or MRI
Evaluation of portal hypertension
 - Doppler US, MR angiography
During Acute Exacerbation
Ultrasonography:
 - Accesses the location of biliary obstruction
 - Diagnosis of abscess
 - Percutaneous drainage
PTC or ERC for biliary obstruction that need drainage
CT:
 - Indicated in patient with persistent sepsis
 - The source of which cannot be satisfactorily elucidate by US or PTC and ERC
CT guide drainage
MRI: not recommend

<table>
<thead>
<tr>
<th>Diagnostic imaging</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>50.0</td>
<td>97.6</td>
</tr>
<tr>
<td>MRT1-GE</td>
<td>77.8</td>
<td>97.6</td>
</tr>
<tr>
<td>MRCP</td>
<td>66.7</td>
<td>100</td>
</tr>
<tr>
<td>MRI (MRCP + MRT1)</td>
<td>94.4</td>
<td>97.6</td>
</tr>
</tbody>
</table>

Management
If asymptomatic: no treatment, F/U
Treatment: when
1) symptomatic
2) stone in extrahepatic duct
3) liver atrophy
4) suspicious malignant
Aims of treatment:
- Prevention of liver damage by early clearance of stones and elimination of bile stasis
 - Removal of stones
 - Removal of strictured bile ducts
 - Providing good drainage of bile
- Minimizing bacterial infection
 - Resection of source of recurrent infection & biliary stasis
 - Removal of cholangiocarcinoma
 - Removal of atrophic liver
 - Removal of hepatic abscess
- Residual stones should be able to spontaneously enter the GI tract

Conclusion Goals:
- To eliminate the source of recurrent sepsis by removal of ductal stones
- Management of stricture duct
- Resection of chronic infective useless hepatic segment
- Preserving functioning liver parenchyma

Treatment
“Combination of different treatment modalities is necessary to improve the outcome of hepatolithiasis”
Stone removal group
Cholangioenterostomy: Residual stone 56%
Percutaneous transhepatic cholangioscopic lithotomy (PTCSL)
Complete clearance 82%; recurrent rate 32-40%

Liver resection group
- Hepatectomy + hepaticosubcutaneous jejunostomy
 - Complete clearance 98%; recurrent rate 9%

Percutaneous Transhepatic Placement of Metallic Stents
- No recurrent strictures or formed calculi were found in the six patients during follow-up periods of up to 64 months.
- Metallic stents are a well-tolerated and promising alternative in the management of refractory intrahepatic long-segment biliary strictures with hepatolithiasis.

Hepatic resection VS PTCSL

<table>
<thead>
<tr>
<th>Vol. 189, No. 2, August 1999</th>
<th>Otani et al</th>
<th>Treatments for Hepatolithiasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2. Comparison of Treatment Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>Hepatic resection</td>
<td>PTCSL</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Final clearance rate of stones</td>
<td>25/26</td>
<td>96.2</td>
</tr>
<tr>
<td>Bile duct strictures at treatment</td>
<td>22/26</td>
<td>84.6</td>
</tr>
<tr>
<td>Remaining bile duct strictures after treatment</td>
<td>4/22</td>
<td>18.2</td>
</tr>
<tr>
<td>Complications</td>
<td>10/26</td>
<td>38.5</td>
</tr>
<tr>
<td>Mortality</td>
<td>1/26</td>
<td>3.8</td>
</tr>
</tbody>
</table>

NS, not significant; PTCSL, percutaneous transhepatic cholangioscopic lithotomy.

PTCSL
- Poor surgical risk patient with previous biliary surgery
- Stone distribution in multiple segments
- Refuse surgery

Stone clearance rate of up to 95% reported when combined with ERCP and Electrohydraulic lithotripsy.

High recurrent rate especially in patient with bile duct stricture (p=0.026)

"PTCSL is effective for treating primary hepatolithiasis in selected case."

Resection the dominant segment followed by PTCSL is recommended for bilateral stones.
Endoscopic Retrograde Approach
- Removal of both Intra & Extrahepatic biliary stones
- Introduction of basket/balloon catheters
- Avoids injury to the hepatic parenchyma
- Difficult technique with high failure rates

Hepatectomy for hepatolithiasis
Seem to be the most definite approach for hepatolithiasis due to:
- Remove the stones and biliary stricture
 - Reduce recurrent stone and cholangitis
- Remove useless liver parenchyma
 - Reduce risk of cholangiocarcinoma and cholangitis

Immediate clearance 86 - 90%
Final outcome up to 98%
Recurrent rate : 9%
Morbidity 16 - 28% (most common = wound infection)
Factors that significant to postoperative complication
 - Hyperbilirubinemia (p=0.038)
 - Right hepatectomy (p=0.006)
Biliary stricture : main cause of recurrent stone
CCA : an independent prognostic factor of survival
Cholangiocarcinoma with hepatolithiasis
5 – 7 %
Should be suspect if:
- CEA > 4.2
- Higher level of serum alkaline phosphatase
- A long history of hepatolithiasis with weight loss
- Age > 40 yrs
Imaging’s suspect:
- filling defect with mucobilia or mucosal change from endoscope
- portal vein thrombosis

Hepatectomy
Depend on: Location of stone and liver parenchyma (liver atrophy)
- Biliary stricture site
- Coexist with CHCA
“Need combination procedures”
Liver resection
 Left lateral segmentectomy
 Left hepatectomy
 Right hepatectomy
Endoscopic treatment: choledoscopy
Surgical bypass or resection for good drainage of bile
 Hepaticojejunostomy
Placement of access loops

Indications for Hepatic Resection
- Advantage
 - Removal of all stones along with pathologic bile ducts including the carcinomatous bile ducts
 - Atrophic & Fibrotic / Abscess of a liver segment or lobe
 - Left > Right
 - Possibility of concomitant cholangiocarcinoma
 - Localized intrahepatic calculi with irreversible biliary strictures

Stone locate one lobe without stricture
- Parenchymal change
 Hepatectomy and choledoscopy + T tube
 ? Hepatico-enterostomy
- Parenchymal unchange
 Choledoscopy with stone removal + T tube
 PTCSL
 ? Hepatectomy ? hepatico-enterostomy

Stone locate both lobes without hilar stricture
 Cholangiography, choledoscopy
 Remove IHD stones
 T-tube
 + Bypass (hepaticojejunostomy with subcutaneous access limb)
 + Hepatectomy and with hepatico-subcutaneous jejunostomy

Stone locate both lobe with hilar stricture
 Hepatectomy and hilar resection with hepatico-subcutaneous jejunostomy
 Hepatectomy and quadrate lobe resection and hilar bile duct plasty with hepaticojejunostomy
 PTCSL with dilatation and stent

Access Loop Procedures
 - Provide continuous postoperative access to the biliary tree for residual/recurrent stone retraction
 - Percutaneous/Cutaneous
- Permanent cutaneous access
 - Hepaticocutaneous jejunosotomy
- Interposition jejunal segment between hepatic hilum & duodenum
- Side to side Roux-en-Y jejuno-duodenal access loop

Survival
Overall 5 years 82 - 93 %
5 year survival with CHCA 9 %