Gait disorders in elderly

By R2 Phatharajit Phatharodom
Introduction

• Gait disorders are common in elderly populations
• Prevalence increases with age
• At the age of 60 years, 85% of people have a normal gait
• At the age of 85 years or older this proportion has dropped to 18%

Introduction

• Gait disorders have devastating consequences → falling → reduction of mobility → loss of independence

• Gait disturbances—even when they present in isolation—can reflect an early, preclinical, underlying cerebrovascular or neurodegenerative disease
Outline

• Pathophysiology of gait
• Anatomical aspects of gait
• Gait and mental function
• Effect of normal ageing on locomotion and gait
• Specific gait disorders
 – Neurological gait disorders
 – Non-neurological gait disorders
Pathophysiology of gait disorders

• Normal gait requires a delicate balance between various interacting neuronal systems
 – **Locomotion** - including initiation and maintenance of rhythmic stepping
 – **Balance**
 – **Ability** to adapt to the environment

Pathophysiology of gait disorders

• The control of gait and posture is multifactorial, and a defect at any level of control can result in a gait disorder
Anatomical aspects of gait

- Poorly understood in humans

- Brainstem locomotor centers → reticulospinal and vestibulospinal projection in ventromedial descending brainstem pathways → conveys signal to interneuron “central pattern generators or spinal locomotor centers” → limb movement in synergy and elaborate walking patterns of muscle activity
Anatomical aspects of gait

• Propriospinal networks link hindlimb, forelimb, and trunk networks to facilitate interlimb coordination

• The cerebral cortex and corticospinal tract are required for precision stepping

• The isolated spinal cord can produce spontaneous movements, but cannot generate rhythmic stepping or maintain truncal balance

• Brainstem and higher cortical connections are necessary for bipedal walking in humans
Anatomical aspects of gait

- **Supraspinal centers** signal when to start walking, when to stop, the speed of locomotion, and the size and direction of stepping.

- **Basal ganglia connections with frontal cortical and basal ganglia** motor circuits influence the initiation of walking and maintain the sequence of rhythmic stepping.
Anatomical aspects of gait

• The **cerebellum** is important in modulating the rate, rhythm, amplitude, and force of voluntary movement and, accordingly, regulates these aspects of stepping.

• **Sensory feedback** about the environment and terrain during the walking cycle also modify motor cortical activity and walking.
Gait and mental function
Gait and mental function

• Normal walking requires strategic planning of the best route, interaction with the environment and with internal factors.

• Failing to understand the significance of an obstacle, choosing an inappropriate route, or misinterpreting one’s own physical abilities can all lead to falls.
Gait and mental function

• Safety and efficacy of normal walking rely on
 – Sensorimotor systems
 – Interaction between the executive control dimension (integration and decision of action) with the cognitive dimension (eg, navigation, visuospatial perception, or attention) and the affective dimension (mood, cautiousness, and risk-taking)
Gait and mental function

- Dual task *(walking and anything else)* paradigm has become the classic way to assess the interaction between cognition and gait.

- In elderly people, this dual task ability deteriorates because *central resources decline*.

- Elderly people slow down or have an increased stride variability (suggesting reduced automaticity) while performing a secondary task during walking.

- Gait becomes less secure and the risk of falling increases.
Gait and mental function

• When **falling** young healthy people → neglect the secondary task and lend more priority to walking safely

• Prudent posture-first strategy is diminished in elderly people and failure to prioritise gait under difficult circumstances

• Research has shown that frontal executive functions are especially important for maintaining walking stability
Gait and mental function

• Dysexecutive functions can be the primary cause of falls in a group of idiopathic elderly fallers

• Explain why falls are so common in patients with dementia and why demented patients are so vulnerable to dual task performance while walking

• Affective disorders are also associated with gait problems in elderly people
Effect of normal ageing on locomotion and gait
Effect of normal ageing on locomotion and gait

• Many older people accept their gait difficulty as being normal for their age and their doctors often support them in this view.

• Senile gait disorder: the slow, shuffling, and cautious walking pattern commonly seen in older age

• Is it true??

• Up to 20% of very old individuals walk normally, hence gait disorders are certainly not an inevitable feature of old age
Effect of normal ageing on locomotion and gait

- The elderly who have gait impairment in fact suffer from underlying disease.

- Senile gait disorders are an early manifestation of underlying pathology, most notably changes, or subclinical changes.

The study suggest abandoning the term senile gait as a specific gait category.

Specific gait disorders
Recognition of specific gait disorders

• 153 community residents aged 88 years and older

• About 61% reported distinct diseases as a cause of gait impairment
 – Non-neurological disorders were the leading causes of gait impairment, in particular joint pain (52 of 87 people)
 – Many others had multiple causes for their gait impairment
 – Stroke was the most common neurological cause

Recognition of specific gait disorders

• Another study of 120 elderly outpatients showed the most common causes for gait disorders were:
 – Sensory ataxia (18%)
 – Myelopathy (17%)
 – Multiple strokes (15%)
 – Parkinsonism (12%)

Neurological gait disorders

- Hypokinetic-rigid gait disorders
- Spastic gait disorders
- Myopathic gait
- Neurogenic gait
- Cerebellar ataxic gait
- Sensory ataxic gait
- Dyskinetic gait
- Frontal lobe gait disorders
Hypokinetic-rigid gait disorders

- Disease of basal ganglia and frontal lobe
- Most common in *Parkinson’s disease*
- Parkinsonian gait
- The posture is *stooped* with flexion of the shoulders, neck, and trunk
- During walking, there is little associated or synergistic body movement
- *Hesitation and freezing*
Hypokinetic-rigid gait disorders

• **Shuffling** with a reduced step height, often with a reduced stride length, leading to slowness of gait

• **Reduced arm swing**

• To maintain balance when walking and avoid falling forward, the patient may advance with a series of rapid, small steps (**festination**)

• Turning movements become slow and are executed **en bloc**
Hypokinetic-rigid gait disorders
Hypokinetic-rigid gait disorders

• Falls occur in Parkinson’s disease when festinating steps are too small to restore balance

• Tripping or stumbling over rough surfaces because steps are too shallow to clear obstacles and corrective steps are too small also leads to falls
Hypokinetic-rigid gait disorders
anatomy aspect

• Etiology:
 • Basal ganglia and their connection to the frontal cortex, brainstem, or both
 • Lesion in frontal lobe
Hypokinetic-rigid gait disorders

Idiopathic Parkinson disease
Secondary parkinsonism
Parkinsonism plus syndromes
Heredodegenerative parkinsonism
<table>
<thead>
<tr>
<th>Main anatomical substrate</th>
<th>Disease process</th>
<th>Characteristic features</th>
<th>Associated features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson’s disease (PD)</td>
<td>Substantia nigra</td>
<td>Neurodegenerative</td>
<td>Good response to levodopa, Resting tremor hand(s)</td>
</tr>
<tr>
<td>Multiple system atrophy, parkinsonian type</td>
<td>Basal ganglia</td>
<td>Neuropathic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerebellum</td>
<td>Early phase like PD gait</td>
<td>Cerebellar ataxia, Autonomic features, Pyramidal signs</td>
</tr>
<tr>
<td></td>
<td>Pyramidal tracts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autonomic nervous system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progressive supranuclear palsy</td>
<td>Diffuse brainstem pathology</td>
<td>Wide-based gait, Freezing common, Erect posture, but with retropulsion, Early spontaneous/backward falls, Motor weakness, Frequent and severe injuries</td>
<td>Vertical gaze palsy, Pseudobulbar palsy, Frontal dementia, Apoplexia sign</td>
</tr>
<tr>
<td>Corticobasal degeneration</td>
<td>Basal ganglia</td>
<td>Neuropathic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cortex</td>
<td>Asymmetrical presentation --- eg. unilaterally, Leg apraxia, dystonia, or myoclonus</td>
<td></td>
</tr>
<tr>
<td>Dementia with Lewy bodies</td>
<td>Basal ganglia</td>
<td>Neuropathic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cortex</td>
<td>Like PD gait, More symmetric</td>
<td></td>
</tr>
<tr>
<td>Subcortical arteriosclerotic encephalopathy</td>
<td>Subcortical white matter</td>
<td>Vascular</td>
<td></td>
</tr>
<tr>
<td>Vascular parkinsonism</td>
<td>Diffuse white matter</td>
<td>Vascular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basal ganglia</td>
<td>More wide based, Less stooped, Relatively preserved arm swing</td>
<td></td>
</tr>
<tr>
<td>Strategic vascular lesion</td>
<td>Putamen</td>
<td>Vascular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globus pallidus</td>
<td>Vascular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thalamus</td>
<td>Vascular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dorsal mesencephalon</td>
<td>Vascular</td>
<td></td>
</tr>
<tr>
<td>Normal pressure hydrocephalus</td>
<td>Frontostriatal (periventricular)</td>
<td>Vascular</td>
<td></td>
</tr>
<tr>
<td>Drug-induced parkinsonism</td>
<td>Basal ganglia (postsynaptic)</td>
<td>Vascular</td>
<td></td>
</tr>
</tbody>
</table>

Vascular causes

Neurodegenerative

NPH

Lancet Neurol 2007; 6: 63–74
Spastic gait disorders

- Spasticity of the arm and leg on one side produces the characteristic clinical picture of a **spastic hemiparesis**

- The arm - adducted, internally rotated at the shoulder, and flexed at the elbow, with pronation of the forearm and flexion of the wrist and fingers

- The leg is slightly flexed at the hip and extended at the knee, with plantar flexion and inversion of the foot
Spastic gait disorders

• The swing phase - slight lateral flexion of the trunk toward the unaffected side and hyperextension of the hip on that side to allow slow **circumduction** of the stiffly extended paretic leg as it is swung forward from the hip, dragging the toe or catching it on the ground beneath

Scuffing toe
Medial side of shoe worn out
Spastic hemiparesis gait
Spastic gait disorders

- **Etiology:**
 - Spastic hemiparesis → determine the site of corticospinal tract that involved
Spastic paraparesis

- Spastic of both legs
- The legs are stiffly extended at the knees, plantar flexed at the ankles, and slightly flexed at the hips
- Both legs circumduct and the toes of the plantar flexed feet catch on the floor with each step
- Scissors gait
- Lesion in spinal cord, ALS
Scissors gait
Myopathic gait

- **Waddling gait or myopathic gait**: Weakness of proximal leg and hip girdle muscles interferes with the stabilization of the pelvis and legs on the trunk during all phases of the gait cycle.
- Failure to stabilize the pelvis produces exaggerated rotation of the pelvis with each step.
- An exaggerated lumbar lordosis occurs.
- *(Trendelenburg sign)*
Waddling gait or myopathic gait
Waddling gait or myopathic gait

• **Etiology**: muscle weakness at limb girdle, proximal muscle weakness
 – Myopathy: hypothyroidism, hyperthyroidism, polymyositis
Neurogenic gait

• Muscle weakness of peripheral nerve origin as in a peripheral neuropathy
• Typically affects distal muscles of the legs and results in a steppage gait
• The patient lifts the leg and foot high above the ground with each step because of weakness of ankle dorsiflexion and footdrop
Steppage gait
Neurogenic gait

- **Etiology**: peripheral nerve origin, as in a peripheral neuropathy eg. Foot drop
Cerebellar ataxic gait
Cerebellar ataxic gait

- Midline cerebellar structures lesions - vermis, and anterior lobe
- Loss of truncal balance, increased body sway, and dysequilibrium

- Wide-based gait, the legs are stiffly extended and the hips slightly flexed to crouch forward and minimize truncal sway
Cerebellar ataxic gait
Cerebellar ataxic gait

• Patients with anterior lobe atrophy develop a 3 Hz anteroposterior sway of the trunk and a rhythmic truncal and head tremor (titubation).

• This combination of truncal gait ataxia and truncal tremor is characteristic of some late-onset cerebellar degenerations affecting the anterior lobe.

• Midline cerebellar pathologies also include masses, paraneoplastic syndromes, and malnutrition in alcoholism.
Cerebellar ataxic gait

- Lesions of the cerebellar flocculonodular lobe (the vestibulocerebellum) exhibit multidirectional body sway, dysequilibrium, and severe impairment of body and truncal motion.

- Standing and even sitting can be impossible.
- When lying down → the heel-to-shin test normal and upper limb function may be relatively preserved.
Cerebellar ataxic gait

- Cerebellar hemispheres
- Decomposition of normal leg movement
- Steps are irregular and variable in timing (*dyssynergia*), length, and direction (*dysmetria*)
- Dysdiadochokinesia
- Ipsilateral limb ataxia
- Little postural instability or truncal imbalance
Cerebellar ataxic gait

- Exacerbated by the **rapid postural adjustments** needed to change direction, turn a corner, or avoid obstacles and when stopping or starting to walk
- Minor support, such as holding the patient’s arm during walking, and **visual compensation** help the patient with a cerebellar ataxia reduce body sway
- **Eye closure may heighten anxiety about falling** and increase body sway but not to the extent observed in a sensory ataxia
Sensory ataxic gait

• Loss of proprioceptive input from the lower limbs → deprives
 – The position of the legs and feet in space
 – The progress of ongoing movement
 – The state of muscle contraction
 – and finer details of the texture of the surface on which the patient is walking

• Esp. walking on uneven surfaces
Sensory ataxic gait

• Wide-based gait and advance cautiously, taking slow steps under visual guidance
• During walking, the feet are thrust forward with variable direction and height
• The sole of the foot strikes the floor forcibly with a slapping sound (**slapping gait**)
• Romberg’s sign positive
Sensory ataxic gait

• **Etiology:** Lesions at any point in the sensory pathways that interrupt large-diameter proprioceptive afferent fibers

• Peripheral neuropathies, posterior root or dorsal root ganglionopathies, and dorsal column of spinal cord lesions are typical etiologies
Dyskinetic gait

- Dyskinesias includes all involuntary movements or postures—eg, chorea or dystonia

- Dyskinesias can contribute to falls by causing excessive trunk movements
Dyskinetic gait

• Might be absent during clinical examination because of their fluctuating character or because patients suppress them intentionally.

• May be task-specific: For example, patients may have severe gait impairment due to leg dystonia, but can easily walk backwards or even run.

• Misinterpreted as a psychogenic sign.
Dyskinetic gait
Dyskinetic gait
Dyskinetic gait

• **Etiology:** early onset Parkinson’s disease presenting with a foot dystonia while walking

• **Idiopathic torsion dystonia**

• Retrocollis in patients with **progressive supranuclear palsy**

• Antecollis or a Pisa syndrome (severe and persistent lateroflexion of the trunk) in patients with **multiple system atrophy**

• Asymmetrical arm or leg dystonia during walking in patients with **corticobasal degeneration**
Frontal lobe gait disorders

- Interruption of connections between the frontal lobes and other cortical and subcortical structures
- Predominantly wide-based ataxic gait to an akinetic-rigid gait with slow, short steps and a tendency to shuffle
Frontal lobe gait disorders

- Shuffling gait
- Hesitation and freezing (ignition failure)
- Arm swing is normal or even exaggerated, \(\rightarrow\) “military twostep” gait
- Inadequate synergies
- P.E. \(\rightarrow\) normal voluntary upper limb and hand movements and a lively facial expression
Frontal lobe gait disorders

- “lower half parkinsonism” is commonly seen in diffuse cerebrovascular disease
- Misdiagnosed as Parkinson’s disease

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>PARKINSON’S DISEASE</th>
<th>SYMPTOMATIC PARKINSONISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posture</td>
<td>Stooped (trunk flexion)</td>
<td>Stooped or upright (trunk flexion/extension)</td>
</tr>
<tr>
<td>Stance</td>
<td>Narrow</td>
<td>Often wide-based</td>
</tr>
<tr>
<td>Initiation of walking</td>
<td>Start hesitation</td>
<td>Start hesitation, magnetic feet</td>
</tr>
<tr>
<td>Steps</td>
<td>Small, shuffling</td>
<td>Small, shuffling</td>
</tr>
<tr>
<td>Stride length</td>
<td>Short</td>
<td>Short</td>
</tr>
<tr>
<td>Freezing</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Leg movement</td>
<td>Stiff, rigid</td>
<td>Stiff, rigid</td>
</tr>
<tr>
<td>Speed</td>
<td>Slow</td>
<td>Slow</td>
</tr>
<tr>
<td>Festination</td>
<td>Common</td>
<td>Rare</td>
</tr>
<tr>
<td>Arm swing</td>
<td>Minimal or absent</td>
<td>Reduced or excessive</td>
</tr>
<tr>
<td>Heel-toe walking</td>
<td>Normal</td>
<td>Poor (truncal ataxia)</td>
</tr>
<tr>
<td>Postural reflexes</td>
<td>Preserved in early stages</td>
<td>Absent at early stage</td>
</tr>
<tr>
<td>Falls</td>
<td>Late (forward, tripping)</td>
<td>Early and severe (backward, tripping or without apparent reason)</td>
</tr>
</tbody>
</table>

TABLE 24-5 Summary of Clinical Features Differentiating Parkinson’s Disease from Symptomatic Parkinsonism in Patients with an Akinetic-Rigid Gait Syndrome
Frontal lobe gait disorders

- When disease progresses → magnetic gait – difficult to initiate a step
- Need sensory cues
- Able to move the legs with greater facility when seated or lying supine than when standing
- Severe balance impairment (no rescue reactions with the pull test; “falling like a log”)
- Impaired truncal mobility in advanced stage
- Paratonic (gegenhalten) rigidity of the arms and legs is common
Frontal lobe gait disorders

- Etiology: bilateral frontal lobe lesion
- Frontal lobe tumors (glioma or meningioma)
- Anterior cerebral artery infarction
- Obstructive or communicating hydrocephalus (especially normal pressure hydrocephalus)
- Diffuse cerebrovascular disease (multiple lacunar infarcts and Binswanger’s disease) all produce a similar disturbance of gait
Non-neurological gait disorders

- Psychogenic gait disorders
- Antalgic gait
- Cautious and careless gaits
Cautious and careless gaits

• Cautious gaits
• Fear of falling
• Loss of confidence when walking
• Move slowly, with a wide base and short strides, with little movement of the trunk, while the knees and elbows are bent
• Improve dramatically when support provided
• Neurological examination is completely normal
Cautious and careless gaits

- **Careless gaits**
- Counterpart of the cautious gait
- Patients seem overly confident and walk inappropriately fast, perhaps because of lack of insight or frontal-lobe disinhibition
- Example
 - PSP
 - Huntington’s disease
 - Delirium
Psychogenic gait disorders

• Suspicious highest in younger patients
• But can occur in elderly
• Not compatible with known gait patterns and they can take unusual forms
• Not to miss underlying organic disease, in particular **frontal-lobe dysfunction**
Psychogenic gait disorders

Panel: Features suggestive of a psychogenic gait disturbance

Suggestive features
- Incongruous with known gait disorders
- Bizarre presentation
- Variable, inconsistent pattern
- Non-physiological pattern
- Rare falls or injuries*
- Abrupt onset
- Extreme slowness
- Unusual or uneconomic posture
- Exaggerated effort
- Sudden buckling of the knees

Associated features
- Incongruous affect (belle indifference)
- Secondary gain
- Prior history of psychiatric disease†

*Striking exemptions with sometimes severe injuries have been described.†Rare, but diagnostic yield is higher with an intensive interview.
Antalgic gait

- Painful gait
- Reduced stance phase on affected limb
- **Limps and gait difficulties** caused by joint disease, bone injury, or soft tissue injury are not usually accompanied by muscle weakness, reflex change, or sensory loss
- **Limitation of the range of movement** at the hip, knee, or ankle joints leads to short steps with a fixed leg posture
Antalgic gait

- Affected limb → shorter stance phase
- Unaffected limb → shorter swing phase
 → ↓ step length
- ↓ walking velocity
Thank you for your attention.